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ABSTRACT

A flag fluttering near a plate exhibits diverse contact behaviors depending on physical conditions such as material and dimensions of the flag
and incident air velocity. Here we experimentally investigate the dynamic interactions of the fluttering flag and the plate, combining high-
speed imaging and triboelectric sensing. We find that the stability criteria of the flag are identical to those of the isolated flag for an insignifi-
cant boundary layer thickness compared with the flag-plate distance. The flag-plate contact modes are classified as tapping, regular clapping,
weakly chaotic clapping, and fully chaotic contact modes. We build a regime map to predict the contact modes based on the mass ratio of
the fluid to the flag and the velocity ratio of the fluid to the bending wave. Despite contact with the plate, key parameters identifying the char-
acteristics of fluttering of the flutter, such as the reduced frequency (the ratio of the time scale of fluid flow passing through the flag to the
period of oscillation) and the Strouhal number (the speed ratio of the flag edge to the wind), are found to be hardly altered compared to those
of isolated flags. This indicates that the flag–fluid interaction still plays a dominant role in the fluttering dynamics of the flag adjacent to a
plate. Results of this study can serve as a guide in the design of flutter-induced energy harvesting systems and help the biomechanical under-
standing of the vocal organs of mammals and birds.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0037049

I. INTRODUCTION

Early study on the fluttering instability dates back to the seminal
work of Rayleigh,1 which showed that the interface between two mov-
ing fluids is always unstable. This study has been elaborated to inter-
pret the fluttering instability of a flag by further taking into account
factors such as the density of fluid and solid, flexural rigidity, structural
damping, finite dimensions, and incident wind velocity.2–11 In addi-
tion to the flutter of the isolated flag, variants of the flag configurations,
including multiple flags,12–17 an inverted flag,18–20 and a flexible plate
near a free surface,21 were investigated to complement the existing
knowledge on the fluttering flag dynamics, thus far.

Meanwhile, the flow induced flutter adjacent to a wall was stud-
ied as a model system for vocal organs, such as the larynx in mammals
and the syrinx in birds, focusing on the flutter without contact.22,23

The utilization of the fluttering flag in a viscous channel is suggested
to enhance the flow-enhanced mixing24 or the heat transfer character-
istics.25–27 Recently, the flag-plate system was utilized as a novel wind
energy harvester, an alternative to conventional wind turbines, based

on contact electrification of the fluttering flag and the plate.28 The out-
standing merits of this system, which include low price and noise,
structural simplicity, small size, and high electrical performance, have
aroused subsequent studies to elaborate the flutter-driven triboelectric
wind energy harvester.29–33 However, the electrical performance of the
system was of major interest rather than the flag-plate contact
dynamics.

Therefore, here we aim to obtain fluid dynamic understanding of
the flutter-driven contact of the flag and plate focusing on the follow-
ing two issues: (1) the stability condition and (2) the dynamic modes
of the contact. Previous results for the isolated flag could be a starting
point of this study, which is briefly reviewed as follows.

First, the physical origin underlying the initiation of the flag flut-
ter has been an important concern for the flag flutter problem. The
scaling law for the critical velocity of the flutter, Uc, suggested by
Argentina and Mahadevan2 gives a crucial insight to this concern. A
scaling law was suggested by considering the balance between the
frequencies of the lowest elastic bending mode and aerodynamic
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oscillations.2 It could be reproduced based on the assumption that
the flutter occurs when the work done by the fluid flow excites the
critical bending energy for the flag flutter as derived in the
following.

Considering a flag having the length L and the width w, the work
done by the fluid flow can be expressed as a product of the area, Lw,
displacement A, and the pressure difference across the flag, Dp. The
pressure difference is scaled as Dp � qU2A=L using the classical air-
foil theory.2,34 The bending energy of the flag is scaled asÐ L
0 Dwj2dL � DwðA=L2Þ2L � DwA2=L3. Balancing the work done
by the fluid and bending energy of the flag, we can obtain the following
scaling relation for the critical velocity:

Uc � D
qL3

� �1=2

: (1)

This scaling law provides a conceptual interpretation for the origin of
the instability of an isolated flag.

Second, several flutter modes are reported for the isolated flag. In
terms of dynamic states,3,7,12,35 flutter modes are classified as stable-
state, periodic flutter, and chaotic flutter. Meanwhile, flutter modes are
classified as node-less, one-node, imperfect node, and multiple-node
flutter in terms of deformed shapes.36–38 The dynamic modes of the
flutter were characterized by two nondimensional parameters:12,35–38

the mass ratio of the fluid to the flag, l ¼ qL=ðqphÞ, and the velocity
ratio of the fluid to the bending wave, Û ¼ ULðqph=DÞ1=2, where q
and qp are, respectively, the density of fluid and solid, and L and h are,
respectively, the length and thickness of the flag, U is the incident
velocity, andD is the flexural rigidity of the flag.

In this study, we examine the stability condition of the flag adja-
cent to a plate in comparison to the isolated flag. Comparisons are
made to previously reported experimental results and theoretical mod-
els including the scaling law for the isolated flag. Next, the dynamics of
the flutter-initiated contacts are examined in terms of the mass ratio
and the nondimensional velocity. The modes of the contact dynamics
are then classified, the corresponding regime map is constructed, and
the physical origin of the contact mode transitions is examined. Last,
the dynamic states of the flag-plate contact are described in terms of

such crucial fluid dynamic dimensionless numbers as the reduced fre-
quency and the Strouhal number.

II. EXPERIMENTAL

To observe the dynamics of a flexible flag without deflection by
its own weight, we employed a vertical wind tunnel designed to drive
the air flow from top to bottom, as shown in Fig. 1. The contraction
area ratio of the wind tunnel is 4:1 and the dimensions of the test sec-
tion are 28:5� 24:5 cm2 in cross section and 45 cm in length. The
blockage ratio was kept below 7% for all the experimental conditions.
The wind flow was driven by the 5 H.P blower and the wind speed U
varied from 2.2 to 21 m/s. The turbulence level of the wind tunnel is
less than 0.5%.

As flag materials, we used polyimide films of 125 and 140lm
thickness, polycarbonate films of 100 and 130lm thickness, and
woven fabric (Solueta Siltex) of 80lm thickness. The length L of the
flag was varied from 5 to 16 cm and the width w from 3 to 8 cm. Thus,
the bending stiffness of the flag, D ¼ Eh3=½12ð1� �2Þ�, with E, h, and
�, respectively, being Young's modulus, thickness of the flag and
Poisson's ratio of the flag material, ranged from 2:61� 10�5 to
6:72� 10�4 N m. The aspect ratio w/L, the mass ratio, l ¼ qL=ðqphÞ,
and the nondimensional velocity (the velocity ratio of the fluid to the
bending wave), Û ¼ ULðqph=DÞ1=2, ranged from 0.25 to 1, 0.5 to 2.5,
and 15 to 150, respectively. The Reynolds number ReL is defined as
ReL ¼ UL=�, where � is the kinematic viscosity of air. In our experi-
ments, the Reynolds number ReL ranges from 7:7� 103 to 1:4� 105.

The motion of the flag was imaged using a high-speed camera
(Photron APX-RS) at the frame rate of 1500 and 3000 s−1. The contact
surface of the plate was covered by polytetrafluoroethylene (PTFE)
film that has a higher electron affinity than that of the woven fabric.
The gap between the flag and the plate was fixed at 15mm. The
instantaneous voltage difference was then induced by contact electrifi-
cation whenever contact between the woven flag and the plate
occurred.39 The voltage signal was measured using an electrometer
(Keithley 6514) to detect the contact as shown in Fig. 1(d).

A useful way to describe the flag flutter dynamics is to analyze
the modal behavior from the flag profiles. The x and y positions of the
flag profiles are extracted by counting pixels in the high-speed images.

FIG. 1. Schematic diagrams of (a) experimental setup with a flag and a plate situated in parallel and (b) a fluttering flag due to air flow with a velocity over the critical value. (c)
Overlapped images of a fluttering woven flag with length L¼ 12 cm, width w¼ 6 cm, and thickness h¼ 80lm under the air flow of U¼ 7.3 m s−1. (d) Schematic diagram of
the setup to measure the voltage induced at the plate.

Physics of Fluids ARTICLE scitation.org/journal/phf

Phys. Fluids 33, 034105 (2021); doi: 10.1063/5.0037049 33, 034105-2

Published under license by AIP Publishing

https://scitation.org/journal/phf


We use proper orthogonal decomposition (POD)40 and dynamic
mode decomposition (DMD)41 with the displacement data repre-
sented in the curvilinear coordinate. The displacement dataset is
defined as {d1, d2, � � �, dn}, where di 2 Rm, n andm are the number of
the displacement data and data point in the displacement data, respec-
tively. In this study, m was fixed at 101 and n varied from 21 to 40 for
different fluttering frequencies.

For the POD analysis, the orthonormal basis, wi 2 Rm, can be
calculated by the eigenvalue decomposition of matrix YTY, where
Y ¼ ½d1; d2;…; dn� 2 Rm�n,

YTYqi ¼ r2i qi; (2)

wi ¼
qi
ri
Y: (3)

Here, r2i and qi are the non-zero eigenvalue and the eigenvector of
YTY, respectively. The orthonormal bases satisfy the following
expression:40

Xn
j¼1

����dj �
Xl

i¼1

ðdTj wiÞwi

����
2

! minimize; (4)

where l is the number of orthonormal bases. The energy fraction cap-
tured by each mode can be calculated as

Energy fraction of mode i ¼ r2iXl

j¼1

r2j

: (5)

The DMD tries to find an optimal linear mapping matrix A
describing the temporal evolution of the system which satisfies the
following expression:

Xn�1

i¼1

jjdjþ1 � Adjjj2 ! minimize: (6)

This equation can be rewritten in the matrix formulation as

Vn
2 � AVn�1

1 ; (7)

where Vj
i ¼ ½di; diþ1;…; dj� for j> i. Using a singular value decompo-

sition of the matrix Vn�1
1 ¼ URWT, we can obtain the following

expression from Eq. (7):

~S � UTAU ¼ UTVn
2WR�1: (8)

Then, the eigenvalue kA and eigenvector /A of matrix A can be calcu-
lated from those of the matrix ~S, kA ¼ k~S and/A ¼ U/~S .

III. RESULTS AND DISCUSSION
A. Stability condition

A flag that is subjected to an incoming flow of fluid begins to flut-
ter when the flow velocity exceeds a critical value that depends on the
physical properties of the flag and that of the fluid. The flag can touch
an adjacent plate only when the flag flutters a significant amplitude,
and thus, investigating the stability condition of the flag is a natural
starting point of the current work. We measured the critical fluid
velocity inducing the flag flutter by increasing the velocity. We also
decreased the fluid velocity after inducing a fluttering motion to mea-
sure the velocity at which the flutter stops. Hysteresis was observed for

the critical condition. When the flow velocity decreased, the flag flutter
continued far below the critical velocity of flutter onset by increasing
the flow velocity. Our primary interest here lies in checking whether
any significant difference can be found from the stability condition of
the isolated flags.

We plot in Fig. 2 the experimental data in a two-dimensional
space constructed by the dimensionless parameters known to critically
affect the stability condition, the mass ratio l, and the ratio of the non-
dimensional velocity Û to l, together with previously reported experi-
mental data and theoretical predictions for isolated flags.47–50 Using
this parameter space, we obtain the following two merits.3 First, the
plot allows us to examine the most physically intuitive relationship
between the flag length L and the wind velocity U when the fluid den-
sity and physical properties of the flags are given, l ¼ ½q=ðqphÞ�L and
l=Û ¼ ½ðqphÞ3=2=ðqD1=2Þ�U . Second, the plot reveals the qualitative
transition of the flutter behaviors, which appears as a sudden jump in
the stability boundary around the mass ratio of 1.2. The transition of
flutter behaviors is not clearly observed when it is plotted according to
Û instead of Û=l.

Overall, our experimental data agree with the theoretical predic-
tions and other experimental data for isolated flags, indicating an
insignificant role of the adjacent plate. When the flag remains stable in
the incoming flow, the boundary layer on the plate is a dominant
source to distort the uniform incoming flow. The boundary layer
thickness of the plate, d, reaches the most at about 1/5 of the flag-plate
gap according to the calculation based on the laminar boundary layer
theory, d � 5:0L=Re1=2L . The largest Reynolds number in the stable
condition is about 1:4� 105, which is below the transition Re to tur-
bulence. It is then reasonable that the stability conditions remain
unchanged.

The flag tends to flutter with a small oscillation amplitude exhib-
iting the first mode of bending for l < 1:2. In this regime where the
linear stability analysis is effective, our experimental results for the
flag-plate system are in good agreement with both the experimental
data of isolated flags and the scaling law from Argentina and
Mahadevan,2 i.e., Û=l ¼ 6:22l�3=2. Once the flutter becomes vigor-
ous enough to enter a nonlinear regime for l > 1:2, significant scat-
ters are observed in both the current and existing experimental data.
This is mainly attributed to the increased nonlinear effects3,5 and

FIG. 2. Plot of critical conditions for flag flutter depending on the mass ratio, l, and
the ratio of the nondimensional velocity to mass ratio. The upright and upside down
triangles correspond to the flutter onset condition measured by increasing and
decreasing wind velocity, respectively.
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planeity defects.6 As a result, it is almost impossible to find a single
theory to predict the stability boundary.

B. Flag-plate contact modes

Despite insignificant effects of the adjacent wall on the stability
condition of the flag, the shape evolution of a flag fluttering near a wall
is distinguished from the isolated flags owing to contact with the wall.
We observed the flag-plate contact dynamics by varying the wind
speed and the flag length while keeping the flag-plate distance at
15mm, using both the high-speed imaging and triboelectric voltage
measurements. We confirmed the reliability of the electrical measure-
ment by checking that the flutter frequency measured from image
analysis coincided with the frequency of voltage signals calculated by
the FFT (fast Fourier transform) analysis.

As the flag becomes longer and the wind speed increases, the flut-
ter gets more vigorous, so that the flutter regime of an isolated flag
evolves from a periodic to a chaotic oscillation. In the presence of the
adjacent wall, we found that the flag undergoing mild oscillation just
taps the plate with its tip (tapping mode). As the flutter grows stron-
ger, the flag touches the plate with its middle part first and then at the
tip in a periodic manner (regular clapping mode). With further
strengthening of the flutter, the contact point propagates from the
middle to the tip before the flag is completely disengaged from the
plate with an unstable trajectory of the tip (weakly chaotic clapping
mode). Finally, the flutter becomes fully chaotic resulting in a
completely random contact behavior (fully chaotic contact mode). We
delineate these contact modes in the following:

1. Tapping mode

Tapping mode refers to when a mildly oscillating flag touches the
plate with its tip [Fig. 3(a)]. The resulting voltage signal from the plate

exhibits regular peaks as shown in Fig. 3(b), whose dominant fre-
quency shown in Fig. 3(c) coincides with the fluttering frequency of
the flag obtained from the high-speed images. The modal analysis of
the flag reveals that flutter is dominated by the first two bending
modes as shown in Fig. 3(d).

2. Regular clapping mode

As the flag gets longer, bending of higher modes arises even at
the same wind speed as above. The flag then touches the plate in the
middle first and then at the tip as shown in Fig. 4(a). The touch of the
middle part inevitably causes contact of a finite area of flag with the
plate. Thus, we refer to this mode as the beginning of the clapping
mode. Regular contacts by the middle portion and subsequently by the
tip are recorded as periodic double peaks of voltage signal in Fig. 4(b).
The difference in the adjacent peak voltage values indicates that the
areal contact of the middle portion gives rise to greater electricity gen-
eration than that of tip tapping. Figure 4(d) reveals slight excitation of
the third bending mode. We note that both in the tapping and the reg-
ular clapping modes, the flag tip exhibits an asymmetric figure-of-eight
trajectory in a periodic manner.

3. Weakly chaotic clapping mode

As the flutter becomes more vigorous, the contact that has begun
in the middle is propagated along the flag to the tip [Fig. 5(a)]. This
mode is discriminated from the regular clapping mode such that the
contact of the middle part propagates along the direction of the travel-
ing wave and that the trajectory of the flag tip is no longer of the regu-
lar figure-of-eight shape but becomes irregular and random. The
chaotic behavior is confined to the flag tip because the contact point
regularly propagates toward the tip. Figure 5(b) shows that the voltage

FIG. 3. (a) Overlapped shapes of a flag contacting the plate in the single tapping
mode. Here, the mass ratio l is 1.13, the nondimensional velocity Û is 21.5, and
the Reynolds number ReL is 2:8� 104. Flags are colored black and gray, before
and after touching the wall, respectively. (b) The voltage signal vs time from tribo-
electrification of the plate. (c) FFT result of the voltage signal. (d) Energy fraction
captured by each bending mode.

FIG. 4. (a) Overlapped shapes of a flag contacting the plate in the regular clapping
mode. Here, the mass ratio l is 1.82, the nondimensional velocity Û is 34.3, and
the Reynolds number ReL is 4:4� 104. Flags are colored black and gray, before
and after touching the wall, respectively. (b) The voltage signal vs time from tribo-
electrification of the plate. (c) FFT result of the voltage signal. (d) Energy fraction
captured by each bending mode.
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is continuously detected for significantly prolonged duration of the
flag-plate contact. The dominant frequency (23Hz) from the FFT
analysis shown in Fig. 5(c) corresponds to the still periodic first con-
tact of the middle of the flag. Modal analysis result in Fig. 5(d) reveals
that the third and fourth bending modes are excited to a significant
degree.

4. Fully chaotic contact mode

When the flag is under fully chaotic flutter regime, the contact
behavior is so random that no rule can be established as shown in Fig.
6(a). It is impossible to predict whether the flag will touch the plate
with its tip or middle because it is random. Unlike the foregoing con-
tact regimes, the flag is twisted in a chordwise direction [z-direction in
Fig. 1(a)], resulting in an irregular change of the contact area as well.
The voltage signals of the fully chaotic mode have much stronger non-
periodicity compared to those of the weakly chaotic clapping and thus
are quite random with no dominant frequency, resulting in a higher
noise of the FFT signal as shown in Fig. 6(c). Bending motions cover-
ing from low to high modes are found to arise through the modal anal-
ysis presented in Fig. 6(d).

5. Dynamic mode decomposition

We further considered the DMD with the snapshots of the flag
profiles in the following. The real and imaginary parts of the DMD
eigenvalues represent the dynamic characteristics of the decomposed
modes such as growing and decaying,41 which is presented in Fig. 7
for the contact modes of tapping, regular clapping, weakly chaotic
clapping, and fully chaotic contact. DMD eigenvalues show that the
transition in the contact modes is closely related to the appearance of
additional dynamic modes, corresponding to the results of the POD
where the transition in the contact mode promotes excitation of addi-
tional bending modes.

For the tapping mode shown in Fig. 7(a), DMD yields two dis-
tinct dynamic modes composed of the complex conjugate pairs. The
real part of these eigenvalues is negative but close to zero, implying a
damped oscillation with a slight decay. Next, the regular clapping
mode is accompanied by the appearance of the third mode having a
negative real eigenvalue, as shown in Fig. 7(b). This mode corresponds
to a non-oscillatory decay. In addition, the two oscillatory modes of
the complex conjugate pairs become slightly divergent represented by
the positive real part of the eigenvalues close to zero. The fluttering fre-
quency of the tapping and regular clapping mode is solely determined

FIG. 6. (a) Overlapped shapes of a flag contacting the plate in a fully chaotic clap-
ping mode. Here, the mass ratio s l is 2.42, the nondimensional velocity Û is 95.1,
and the Reynolds number ReL is 1:2� 105. (b) The voltage signal vs time from tri-
boelectrification of the plate. (c) FFT result of the voltage signal. (d) Energy fraction
captured by each bending mode.

FIG. 7. Eigenvalues obtained from DMD: (a) l ¼ 1:13; Û ¼ 21:5, (b)
l ¼ 1:82; Û ¼ 34:3, (c) l ¼ 2:42; Û ¼ 64:3, and (d) l ¼ 2:42; Û ¼ 95:15.

FIG. 5. (a) Overlapped shapes of a flag contacting the plate in a weakly chaotic
clapping mode. Here, the mass ratio l is 2.42, the nondimensional velocity Û is
64.3, and the Reynolds number ReL is 8:2� 104. (b) The voltage signal vs time
from triboelectrification of the plate. (c) FFT result of the voltage signal. (d) Energy
fraction captured by each bending mode.
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by the conjugate complex pairs as a definite value corresponding to
the periodic flutter of the isolated flag.

The emergence of the chaotic behavior coincides with the excita-
tion of the additional oscillatory mode as shown in Fig. 7(c). The addi-
tional oscillatory mode also appears as a complex conjugate pair with
a non-integer harmonic frequency. This observation corresponds to
the results of the isolated flag where the route to chaos is initiated with
the emergence of the non-integer harmonic frequency.7,42 Moreover,
the divergence of the dynamic modes becomes stronger for the chaotic
behavior. For the weakly chaotic clapping mode shown in Fig. 7(c),
the non-oscillatory mode becomes divergent having a positive real
eigenvalue, while the two oscillatory conjugate pairs are convergent.
The transition to fully chaotic modes exhibits the excitation of multiple
conjugate pairs, where the primary oscillatory modes diverge as shown
in the positive real part of the eigenvalues in Fig. 7(d).

C. Oscillation frequency and amplitude

The symmetry of the flag oscillation is broken due to its interac-
tion with the wall even under mild fluttering. A question naturally
arises on whether the frequency and oscillation amplitude of the flag
flutter near the plate are different from those of the isolated flags.
Figures 8(a) and 8(b) plot our experimental measurement results of
the frequency and the amplitude in the positive y axis under interac-
tion with the adjacent plate vs the nondimensional velocity Û . We
measured the frequency and amplitude for each cycle and reported the
ranges (maximum to minimum) of observations indicated by the error
bars. Here, the amplitude is the maximum distance of the flag tip from
the center plane [the zx-plane in Fig. 1(a)] before it begins approach-
ing the plate. The nondimensional velocity was taken as a characteris-
tic measure of the strength of fluid-induced excitation of flag

deformation. The experiments used three different flags with mass
ratios of 1.13, 1.82, and 2.42, which exhibit tapping, regular clapping,
and weakly chaotic clapping modes around the flutter onset velocity,
respectively.

Figure 8(a) shows that the oscillation frequency increases with
the nondimensional velocity regardless of the contact modes. The
increasing rate of the frequency is highest for the tapping mode
because the flag in this mode stores the smallest bending energy com-
pared to the kinetic energy owing to its low bending modes. The flap-
ping amplitude in Fig. 8(b) increases with the nondimensional velocity
before the transition to fully chaotic mode at high Û . In the fully cha-
otic regime, the flapping amplitude is lower than the maximum exhib-
ited in the weakly chaotic clapping regime. This is attributed to the
excitation of a broad range of bending modes in the fully chaotic con-
tact mode. Still, no general rule can be drawn in the fully chaotic mode
with the amplitude changing significantly for each flapping cycle.

Based on the experimental observations on the oscillation fre-
quency and amplitude, two nondimensional parametersÐthe reduced
frequency (fL/U) and the Strouhal number (St ¼ 2fA=U) describing
the interaction characteristics of fluid flow and flag flutterÐare
obtained as shown in Figs. 8(c) and 8(d), respectively. The reduced fre-
quency is the ratio of the duration of fluid flow passing through the
flag (L/U) to the period of oscillation (1=f ). The reduced frequencies
of the three different flags are confined in a narrow range of 0.3 to 0.6
as shown in Fig. 8(c), despite significant changes in fluttering fre-
quency. These results are consistent with previous observations on iso-
lated flag flutter, which show the adjustment of the reduced
frequencies toward the similar values from around 0.3 to 0.6 as sum-
marized in Table II. This indicates that the interaction characteristics
of fluid and flag flutter are dominated by the inherent properties of the
fluttering flag rather than that of the contact. The Strouhal number is

FIG. 8. Frequency and amplitude of flag
flutter adjacent to a plate as a function of
the nondimensional velocity, Û . (a)
Experimentally measured frequency. (b)
Experimentally measured amplitude. (c)
The reduced frequency. (d) The Strouhal
number. The experimental conditions for
each symbol are listed in Table I.
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the ratio of the velocity of the flag edge (2Af) and the wind speed (U),
which describes the interaction dynamics of an object moving in the
fluid and wake generated by the motion of the object.45 Figure 8(d)
shows that the Strouhal number monotonically increases with the
nondimensional velocity and tends to converge around 0.2 to 0.4
above the nondimensional velocity of approximately 60, regardless of
the mass ratio. This value corresponds to the isolated flag cases

summarized in Table III and the optimal Strouhal number of swim-
ming and flying animals.46

Our observations indicate that the flag–fluid interaction has a
dominant influence on the fluttering dynamics, despite the contact
between the flag and the plate. It is peculiar because the contact
between the flag and the plate largely disturbs fluttering behaviors via
the instantaneous dissipation of the kinetic energy of the flag. We attri-
bute these findings to the characteristics of the contact behaviors that
the momentary impact is restricted to a quarter of the flag regardless
of contact modes. Even though the first contact was made around the
midpoint of the flag as shown in the weakly chaotic clapping mode,
the contact point around the midpoint smoothly swaps along the plate
and the last impact occurs around the edge of the flag. This makes the
energy transfer of the flag adjacent to the plate similar to that of the
isolated flag, resulting in similar values of the reduced frequency and
the Strouhal number. The energy is transferred from the fluid to the
flag along the middle part of the flag, whereas the mechanical energy
of the flag is extracted to the fluid at the tip.38

D. Regimemap

We provide a regime map that can predict the contact modes of
the flag and plate based on our experimental observations. The map is
constructed based on the two most important nondimensional param-
eters known to affect the flag dynamics, the mass ratio l, and the ratio
of the nondimensional velocity to mass ratio, Û=l. The plot in Fig. 9

TABLE II. Reported reduced frequencies of the isolated flag.

Publication Reduced frequency Conditions

Eloy et al. (2008)5 0.29–0.59 l¼ 0.74–1.94; Û¼8.1–10.4
Virot et al. (2013)37 0.29–0.48 l¼ 0.69–2.84; Û¼8.3–13.5
Chen et al. (2014)43 0.35–0.45 l¼ 1; Û¼0–20

TABLE III. Reported Strouhal numbers of the isolated flag.

Publication Strouhal number

Shelley et al. (2005)44 0.22–0.31
Connell and Yue (2007)7 0.29–0.48
Huang and Sung (2010)8 0.16–0.35

TABLE I. Experimental conditions for the symbols in Fig. 8.

Symbol Length (cm) Width (cm) Thickness (lm) Density (kg/m3) Flexural rigidity (N m) Mass ratio Contact mode

� 7.5 5 80 988 2.61 � 10−5 1.13 Tapping
� 12 8 80 988 2.61 � 10−5 1.82 Regular clapping
� 16 10.5 80 988 2.61 � 10−5 2.42 Weakly chaotic clapping

FIG. 9. Regime map of flag-plate contact modes. The black solid line corresponds to the scaling law for the flutter onset condition (Û=l ¼ 6:22l�3=2) and the broken line
refers to the empirical condition for transition to a fully chaotic mode. The reported fluttering modes of the isolated flag in Table IV are incorporated in this plot with red and black
colors indicating the single neck and double neck modes, respectively.
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has two transition boundaries of the dynamic states: (1) critical condi-
tion for flutter above which periodic oscillation arises and (2) transi-
tion to a fully chaotic mode. When the flag-plate contact occurs in a
periodic manner, contact behaviors can be classified as tapping and
clapping modes. Increase in the mass ratio leads to the transition from
tapping to clapping mode, which corresponds to the transition of
modal behavior of the isolated flag around a mass ratio of 1.2–1.5
reported by previous publications. Transition from the single neck to
double neck flutter is summarized in Table IV.

The transition to chaotic mode from the periodic oscillation is
less obvious because there is an intermediate weakly chaotic clapping
mode that exhibits an irregular behavior in a confined area of the flag
tip. The weakly chaotic clapping mode is observed for the mass-ratio
above 1.8. Before the mass ratio of approximately 2.4, the transition
from weakly chaotic clapping to fully chaotic contact mode is initiated
by increasing the wind speed. On the other hand, the flag is highly
destabilized above the mass ratio of 2.4, showing the weakly chaotic
clapping behavior just above the critical velocity for flutter.

Furthermore, for the mass ratio above approximately 1.3, the
transition boundary of Û=l is shown to be nearly independent of the
mass ratio, thus leading to Û=l � constant with an estimated value
around 35. The transition to the fully chaotic mode is relevant to the
excitation of the multiple oscillatory modes as shown in Fig. 7(d). We
suppose that there is a possible asymptotic limit where the flag is vul-
nerable to the excitation of multiple dynamic modes resulting in a fully
chaotic behavior. It is worth further investigating to see if there exists a
similar boundary for the fully chaotic behavior for isolated flags.

IV. CONCLUSIONS

We have experimentally investigated the dynamics of a fluttering
flag interacting with an adjacent rigid plate. Of particular interest were
the critical conditions to induce flutter, the contact modes of flag and
plate, and the frequency and amplitude of oscillation. We have found
that the contact mode evolves from regular to chaotic as the flag length
and incident fluid velocity increase. In the regular regime, the flag first
touches the plate only with its tip (tapping mode). However, it touches
the plate with its middle part and then the tip (regular clapping mode)
as the flutter becomes more vigorous. Before the contact mode
becomes fully chaotic, an intermediate regime appears where the

chaotic behavior is limited to the flag tip, while the periodic contact-
propagation occurs from the middle to the tip of the flag.

The physical mechanisms underlying the contact mode transi-
tions were examined based on the POD and DMD. The transition
boundary from the tapping to regular clapping contact modes corre-
sponds to the fluttering mode transition of the isolated flag from the
single neck to the double neck flutter.3,5,37 The emergence of the cha-
otic behavior is shown to be initiated by the excitation of the additional
oscillatory mode with a non-integer harmonic frequency. The same
observations are reported in the isolated flag for the route to chaos as
well.7,41 In addition, the eigenvalues obtained from the DMD suggest
that the chaotic behavior can be interpreted by the strong diverging
tendency of the dynamic modes composing the fluttering behavior.

Despite such rich interaction dynamics of the flag with the adja-
cent plate, the critical condition for flutter onset, the reduced fre-
quency, and the Strouhal number have been found to slightly change
from that of the isolated flags. The fluttering frequency is almost iden-
tical to that of the isolated flag even with a contact, resulting in a simi-
lar level of reduced frequency. The fluttering amplitude decreases by
the contact near the critical condition. However, it rapidly increases by
the wind velocity showing the adjustment of the Strouhal number
from 0.3 to 0.6, which corresponds to that of the isolated flag and the
reported optimal Strouhal number of the flapping-based locomotion.

The interaction of the flexible flags with rigid plates is recently
drawing great interest for its practical applications in triboelectric har-
vesting of wind energy. The frequency and contact duration determine
the electrical power collected by the contact electrification that is con-
verted from the kinetic energy of the flag, which in turn comes from
the incident air flow. This work predicts that a longer flag under a
stronger wind contacts the plate longer and more frequently, helping
us to harvest more energy from the environmental air flow. However,
the longer flag stores more elastic bending energy due to the excitation
of higher bending modes, resulting in the decrease in the kinetic
energy of the flag. Thus, we anticipate that an optimal flag condition
exists for wind energy harvesting, a topic awaiting further study.

Different contact modes of flexible flag with adjacent wall have
direct implications on how mammals and birds generate sound using
their vocal organs consisting of a flexible membrane and a surround-
ing channel. In particular, the contact of the flexible membrane to the
channel is relevant to some failure situations in a vocal organ such as
snoring, where the extreme behavior of the fluttering membrane possi-
bly causes the blockage of the airway path.22 Hence, further efforts are
encouraged to investigate the relationship between the extreme failure
situations in the vocal organ and the fundamental contact modes of a
flag and an adjacent wall.
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APPENDIX: EFFECTS OF THE FLAG-PLATE
DISTANCE

We observed the fluttering dynamics of a flag adjacent to the
plate by changing the flag-plate distance and the incoming velocity
as shown in Fig. 10. The fluttering amplitudes of the plate side and

TABLE IV. Reported fluttering modes of the isolated flag.

Publication Fluttering mode Conditions

Tang and
Pa€ıdoussis (2007)3

Single neck l¼ 0.2; Û¼9.95
l¼ 0.2; Û¼13.78

l¼ 1.1; Û¼critical condition
Dobule neck l¼ 1.2; Û¼critical condition

l¼ 2.0; Û¼critical condition
Eloy et al. (2008)5 Single neck l¼ 0.74; Û¼8.1

Doble neck l¼ 1.94; Û¼10.9
Virot et al. (2013)37 Single neck l¼ 0.69; Û¼8.3

l¼ 1.49; Û¼11.0
Dobule neck l¼ 1.59; Û¼17.1

l¼ 2.84; Û¼13.5
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the opposite side are almost identical except when the contact of
the flag and the plate was made, implying the insignificant influence
of the plate on the fluttering dynamics. For the small flag-plate dis-
tance, the flag flutter makes a continuous contact with the plate. In
this situation, the fluttering frequency remains almost unchanged
compared to the case without contact as shown in Fig. 10(a). The
fluttering amplitude significantly decreases due to the dissipation of
the energy caused by the contact as shown in Fig. 10(b). However,
for the flag flutter without the contact, there were no significant
changes in the fluttering dynamics including the frequency and the
amplitude by the flag-plate distances. The trends in frequency and
amplitude largely depend on the incoming wind velocity.
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